J Am Med Inform Assoc 17:322-327 doi:10.1136/jamia.2009.002725
  • Research paper

The disclosure of diagnosis codes can breach research participants' privacy

  1. Bradley Malin
  1. Department of Biomedical Informatics, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
  1. Correspondence to Dr Grigorios Loukides, Department of Biomedical Informatics, School of Medicine, Vanderbilt University, 2525 West End Avenue, Nashville, Suite 800, TN 37203, USA; grigorios.loukides{at}
  • Received 3 August 2009
  • Accepted 26 February 2010


Objective De-identified clinical data in standardized form (eg, diagnosis codes), derived from electronic medical records, are increasingly combined with research data (eg, DNA sequences) and disseminated to enable scientific investigations. This study examines whether released data can be linked with identified clinical records that are accessible via various resources to jeopardize patients' anonymity, and the ability of popular privacy protection methodologies to prevent such an attack.

Design The study experimentally evaluates the re-identification risk of a de-identified sample of Vanderbilt's patient records involved in a genome-wide association study. It also measures the level of protection from re-identification, and data utility, provided by suppression and generalization.

Measurement Privacy protection is quantified using the probability of re-identifying a patient in a larger population through diagnosis codes. Data utility is measured at a dataset level, using the percentage of retained information, as well as its description, and at a patient level, using two metrics based on the difference between the distribution of Internal Classification of Disease (ICD) version 9 codes before and after applying privacy protection.

Results More than 96% of 2800 patients' records are shown to be uniquely identified by their diagnosis codes with respect to a population of 1.2 million patients. Generalization is shown to reduce further the percentage of de-identified records by less than 2%, and over 99% of the three-digit ICD-9 codes need to be suppressed to prevent re-identification.

Conclusions Popular privacy protection methods are inadequate to deliver a sufficiently protected and useful result when sharing data derived from complex clinical systems. The development of alternative privacy protection models is thus required.


  • Funding This research was funded by grant U01HG004603 of the National Human Genome Research Institute and 1R01LM009989 of the National Library of Medicine.

  • Competing interests None.

  • Provenance and peer review Not commissioned; externally peer reviewed.

Free Sample

This recent issue is free to all users to allow everyone the opportunity to see the full scope and typical content of JAMIA.
View free sample issue >>

Access policy for JAMIA

All content published in JAMIA is deposited with PubMed Central by the publisher with a 12 month embargo. Authors/funders may pay an Open Access fee of $2,000 to make the article free on the JAMIA website and PMC immediately on publication.

All content older than 12 months is freely available on this website.

AMIA members can log in with their JAMIA user name (email address) and password or via the AMIA website.

Navigate This Article