rss
J Am Med Inform Assoc 18:218-224 doi:10.1136/amiajnl-2011-000137
  • Research and applications

Rank-based spatial clustering: an algorithm for rapid outbreak detection

  1. Fu-Chiang Tsui
  1. RODS Laboratory, Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
  1. Correspondence to Jialan Que, Parkvale Building M-183, 200 Meyran Avenue, Pittsburgh, PA 15260, USA; jiq4{at}pitt.edu
  • Received 12 August 2009
  • Accepted 10 February 2011

Abstract

Objective Public health surveillance requires outbreak detection algorithms with computational efficiency sufficient to handle the increasing volume of disease surveillance data. In response to this need, the authors propose a spatial clustering algorithm, rank-based spatial clustering (RSC), that detects rapidly infectious but non-contagious disease outbreaks.

Design The authors compared the outbreak-detection performance of RSC with that of three well established algorithms—the wavelet anomaly detector (WAD), the spatial scan statistic (KSS), and the Bayesian spatial scan statistic (BSS)—using real disease surveillance data on to which they superimposed simulated disease outbreaks.

Measurements The following outbreak-detection performance metrics were measured: receiver operating characteristic curve, activity monitoring operating curve curve, cluster positive predictive value, cluster sensitivity, and algorithm run time.

Results RSC was computationally efficient. It outperformed the other two spatial algorithms in terms of detection timeliness, and outbreak localization. RSC also had overall better timeliness than the time-series algorithm WAD at low false alarm rates.

Conclusion RSC is an ideal algorithm for analyzing large datasets when the application of other spatial algorithms is not practical. It also allows timely investigation for public health practitioners by providing early detection and well-localized outbreak clusters.

Footnotes

  • Funding This work is supported by grants CDC-1U38HK000063-01, CDC-1 R01 PH00026-01, PADOH-ME-01737, and NSF-IIS-0325581.

  • Competing interests None.

  • Provenance and peer review Not commissioned; externally peer reviewed.

Related Article

Free Sample

This recent issue is free to all users to allow everyone the opportunity to see the full scope and typical content of JAMIA.
View free sample issue >>

Access policy for JAMIA

All content published in JAMIA is deposited with PubMed Central by the publisher with a 12 month embargo. Authors/funders may pay an Open Access fee of $2,000 to make the article free on the JAMIA website and PMC immediately on publication.

All content older than 12 months is freely available on this website.

AMIA members can log in with their JAMIA user name (email address) and password or via the AMIA website.

Navigate This Article